If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32^-2x+1=(1/64)^3x
We move all terms to the left:
32^-2x+1-((1/64)^3x)=0
Domain of the equation: 64)^3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-2x-((+1/64)^3x)+1+32^=0
We add all the numbers together, and all the variables
-2x-((+1/64)^3x)=0
We multiply all the terms by the denominator
-2x*64)^3x)-((+1=0
Wy multiply elements
-128x^2+1=0
a = -128; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-128)·1
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-128}=\frac{0-16\sqrt{2}}{-256} =-\frac{16\sqrt{2}}{-256} =-\frac{\sqrt{2}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-128}=\frac{0+16\sqrt{2}}{-256} =\frac{16\sqrt{2}}{-256} =\frac{\sqrt{2}}{-16} $
| 9-(1-3y)=4+4-(3-y) | | -5x+45-89=90+4 | | 14(x-3)-22*x=-18 | | -3p+6=0 | | 40=6g | | x+1/4=4x-6/6 | | -x+11=23 | | 47+3=2y+8 | | −x+11=23 | | 186-2x=0 | | 2(x+5)+4x=10+10x-12 | | -8y-14=-6(y+5) | | (y+2)^2/3=y+2+(y^2)/3 | | 5/2x-3=8+2x/3 | | 186-2=x | | 9w-24=21 | | −x+11=23. | | 2(4x-x)=2x+4 | | 36=13n+-4n | | 7+8x=2+8x | | 6y+5+3y+5=14y-20 | | 6*(a/3)=2 | | -6(w-1)=2w+22 | | 10x×10x+100x+210=0 | | q=140-4 | | 5u+5u=30+30 | | 90=20+5x | | -6(8+n)=2n | | 32=2n-6 | | 6+2y=26 | | 105=5y+16 | | 3÷2x-8÷5x=26 |